

YDLIDAR T-MINI PRO 开发手册

目录

1	_	工作机制	1
	1.1	l 系统工作流程	1
2	14/2	系统通信	2
	2.1	1 通信机制	2
	2.2	2 系统命令	2
	2.3	3 系统报文	2
3	装	数据协议	3
	3.1	l 扫描命令 [A5 60]	4
	3	3.1.1 起始位解析	4
	3	3.1.2 光强解析	5
	3	3.1.3 干扰过滤	5
	3	3.1.4 距离解析	5
	3	3.1.5 角度解析	5
	3	8.1.6 校验码解析	6
	3	3.1.7 CT信息解析	6
	3.2	2 停止命令 [A5 65]1	0
	3.3	3 设备信息 [A5 90]1	0
	3.4	4 健康状态 [A5 92]1	0
	3.5	5 扫描频率设置 [A5 09/0A/0B/0C]1	1
	3.6	6 扫描频率获取 [A5 0D]1	2
	3.7	7 重启命令 [A5 40]1	2
4	ì	速度控制1	2
5	1	使用注意1	2
6	41	/ <u>/</u>	3

1 工作机制

YDLIDAR T-mini Pro(以下简称 T-mini Pro)的系统设置了4种工作模式:空闲模式、扫描模式、停机模式、掉电保护模式;

- ▶ **空闲模式:** T-mini Pro 上电时,默认为空闲模式,空闲模式时,T-mini Pro 的测距单元不工作,激光器不亮。
- ▶ **扫描模式:** 当 T-mini Pro 进入扫描模式时,测距单元点亮激光器,开始工作,不断对外部环境进行激光采样,并经过后台处理后实时输出。
- ▶ **停机模式:** 当 T-mini Pro 运行有错时,如开启扫描时,激光器不亮,电机不转等状况, T-mini Pro 会自动关闭测距单元,并反馈错误代码。
- ▶ 掉电保护模式:在此模式下雷达需要持续发送扫描命令,雷达才会持续的扫描,发送间隔小于3秒。如果雷达接收不到持续的扫描命令,系统会自动停机,该模式默认不开启。

1.1 系统工作流程

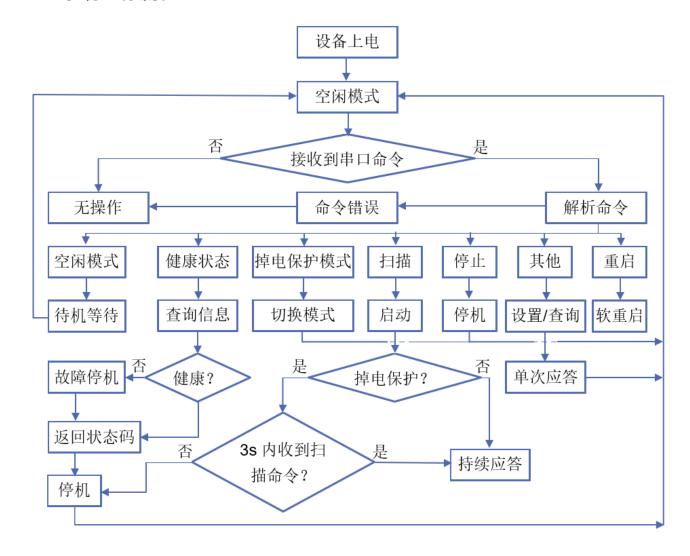


图 1 YDLIDAR T-MINI PRO 系统工作流程图

2 系统通信

2.1 通信机制

T-mini Pro 是通过串口来和外部设备进行命令和数据的交互。当外部设备发送一个系统命令至 T-mini Pro, T-mini Pro 解析系统命令,会返回相应的应答报文,并根据命令内容,来切换相应的工作状态,外部系统根据报文内容,解析报文,便可获取应答数据。

图 2 YDLIDAR T-MINI PRO 系统通信机制

2.2 系统命令

外部系统通过发送相关的系统命令,便可设置 T-mini Pro 相应的工作状态,获取相应的数据。T-mini Pro 的系统命令统一为 2 个字节,其中起始字节统一为 0xA5,第二个字节为命令内容。T-mini Pro 对外发布的系统命令如下:

系统命令		描述	模式切换	应答模式
	0x60	开始扫描,输出点云数据	扫描模式	持续应答
	0x65	停机,停止扫描	停机模式	无应答
	0x90	获取设备信息(型号、固件、硬件版本)	不切换	单次应答
	0x92	获取设备健康状态	不切换	单次应答
0xA5	0x09	增加 0.1Hz 当前设置的扫描频率	不切换	单次应答
(起始)	0x0A	减小 0.1Hz 当前设置的扫描频率	不切换	单次应答
	0x0B	增加 1Hz 当前设置的扫描频率	不切换	单次应答
	0x0C	减小 1Hz 当前设置的扫描频率	不切换	单次应答
	0x0D	获取当前设置的扫描频率	不切换	单次应答
	0x40	设备软重启	/	无应答

表1 YDLIDAR T-MINI PRO 系统命令

2.3 系统报文

系统报文时系统根据接收的系统命令反馈的应答报文,不同的系统命令,系统报文的应 答模式和应答内容也不一样,其中应答模式有三种:无应答、单次应答、持续应答。

无应答表示系统不反馈任何报文;单次应答表示系统的报文长度是有限的,应答一次即结束;持续应答表示系统的报文长度是无限长的,需要持续发送数据,如进入扫描模式时。

单次应答和持续应答的报文采用同一个数据协议,其协议内容为:起始标志、应答长度、应答模式、类型码和应答内容,通过串口16进制输出。

表2 YDLIDAR T-MINI PRO 系统报文数据协议

	起始标	志	应答	长度		应答模式			类型码	
	16bits		30b	its	2bits				8bits	/
字节偏移:										
	0		2		4		6	7		
	LSB	MSB	LSB	MSB	LSB	MSB	LSB		••	••
	■ 起始标志		示志	应答	长度		答模式		类型码	■ 应答内容

图 3 YDLIDAR T-MINI PRO 系统报文数据协议示意图

- ▶ **起始标志:** T-mini Pro 的报文标志统一为 0xA55A;
- ▶ 应答长度: 应答长度表示的是应答内容的长度,但当应答模式为持续应答时,长度应为 无限大,因此该值失效:
- ▶ **应答模式:** 该位只有 2bits,表示本次报文是单次应答或持续应答,其取值和对应的模式 如下:

表3 YDLIDAR T-MINI PRO 应答模式取值和对应应答模式

应答模式取值	0x0	0x1	0x2	0x3
应答模式	单次应答	持续	未定	三义

- ▶ 类型码: 不同的系统命令,对应不同的类型码;
- ▶ 应答内容:不同的系统命令,反馈不同的数据内容,其数据协议也不同。

注 1: T-mini Pro 的数据通信采用的是小端模式,低位在前。

注 2: 应答报文中,第6个字节的低6位属于应答长度,高2位属于应答模式。

3 数据协议

不同的系统命令,有着不同报文的报文内容。而不同类型码的报文中,其应答内容的数据协议也不尽相同。因此,用户需要根据相应的数据协议,来解析应答内容中的数据,如点云数据、设备信息等。

3.1 扫描命令 [A5 60]

当外部设备向 T-mini Pro 发送扫描命令时,T-mini Pro 会进入扫描模式,并反馈点云数据。其应答报文为:

图 4 YDLIDAR T-MINI PRO 扫描报文示意图

其中第6个字节高2为01,因此应答模式取值为0x1,为持续应答,忽略应答长度,类型码为0x81:

应答内容为系统扫描的点云数据,其按照以下数据结构,以 16 进制向串口发送至外部设备。

2 6 8 16 4 10 12 14 PH CT **FSA** LSA CS S1 **S2** LSN LSB MSB $3^{\rm rd}\!{\rm MSB}$ 1stLSB 2^{nd} $3^{\rm rd}\!MSB$ MSB MSB LSB MSB LSB MSB $1^{\rm st} LSB \\$ LSB LSB

字节偏移:

图 5 扫描命令应答内容数据结构示意图

内容	名称	描述
PH(2B)	数据包头	长度为 2B, 固定为 0x55AA, 低位在前, 高位在后。
CT (1B)	扫描频率& 包类型	表示当前数据包的类型,CT[bit(0)]=1 表示为一圈数据起始, CT[bit(0)]=0 表示为点云数据包,CT[bit(7:1)]为预留位。
LSN(1B)	采样数量	表示当前数据包中包含的采样点数量;起始数据包中只有1个起始点的数据,该值为1。
FSA (2B)	起始角	采样数据中第一个采样点对应的角度数据
LSA (2B)	结束角	采样数据中最后一个采样点对应的角度数据
CS (2B)	校验码	当前数据包的校验码,采用双字节异或对当前数据包进行校验

表4 扫描命令应答内容数据结构描述

3.1.1 起始位解析

Si (3B)

当检测到 CT[bit(0)]=1 时,表明该包数据为起始数据包,表示一圈数据的起始,该数据包中 LSN = 1,即 Si 的数量为 1; 其距离、角度的具体值解析参见下文;

S 节点,用于存放系统测距的采样数据和 Quality 数据

当检测到 CT[bit(0)]=0 时,表明该包数据为点云数据包。

采样数据

注: CT[bit(7:1)]为预留位,未来版本会用作其他用途,因此在解析 CT 过程中,只需要对 bit(0)位做起始帧的判断。

3.1.2 光强解析

光强解算公式: Intensity(i) = Intensity[7:0]

光强表示该激光信号的强弱信息, 存放在 Si 节点的第1个字节中。

其中, Si 为采样数据, Si (j)表示 Si 的第 j 个字节。设采 样数据为 64 E5 6F, 所以本采样点 S(1) = 0x64=100(dec),

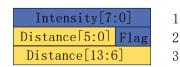


图 6 S 节点数据结构示意图

所以 Intensity= 100。

注: S 节点中, 第一个字节存放 Intensity, 其取值范围为 0~255。

3.1.3 干扰过滤

T-mini Pro 内部集成了干扰识别算法,对信号存在干扰的点会在 Flag 上打上标记,用户可以根据实际使用情况对信号存在干扰的点进行过滤,具体如下:

- 1) Flag=2, 信号存在镜面反射的干扰, 建议过滤该点的测距值, 滤除干扰;
- 2) Flag=3, 信号存在环境光的干扰, 建议过滤该点的测距值, 滤除干扰;

注: 当对干扰标记的点都进行过滤时, T-mini Pro 的抗噪效果是比较优秀的, 同时会损失部分点云图的细节信息, 用户可以根据实际使用场景, 选择不同的滤噪策略。

3.1.4 距离解析

距离解算公式: Distance_i = Lshiftbit(Si(3), 6) + Rshiftbit(Si(2), 2)

其中, Si 为采样数据, Lshiftbit(data, 1)表示将数据 data 左移一位, Rshiftbit(data, 1)表示将数据 data 右移一位。设采样数据为 64 E5 6F,由于本系统是小端模式,所以本采样点求解得:

Distance = dec(Lshiftbit(0x6F, 6)) + dec(Rshiftbit(0xE5, 2)) = 7161mm

3.1.5 角度解析

角度数据保存在 FSA 和 LSA 中,每一个角度数据有如下的数据结构,C 是校验位,其值固定为1。具体过程如下:

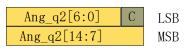


图 7 角度数据结构示意图

起始角解算公式: $Angle_{FSA} = \frac{Rshiftbit(FSA,1)}{64}$

结束角解算公式: $Angle_{LSA} = \frac{Rshiftbit(LSA,1)}{64}$

中间角解算公式:
$$Angle_i = \frac{diff(Angle)}{LSN-1} * (i-1) + Angle_{FSA}$$
 $(i=2,3,...,LSN-1)$

Rshiftbit(data, 1)表示将数据 data 右移一位。diff(Angle)表示起始角到结束角的顺时针角度差,LSN 表示本帧数据包采样数量。

3.1.6 校验码解析

校验码采用双字节异或,对当前数据包进行校验,其本身不参与异或运算,且异或顺序 不是严格按照字节顺序,其异或顺序如下面的例子所示,需要注意的是,由于采样数据 Si 有 3 个字节,需要将 Si 第一个字节的高 8 位补零再异或。

AA 55 20 13 95 A9 63 00 5A E8 01 08 B9 01 AC B8 01 F8 B6 01 88 B5 01 58 AE 01 C0 AB 01 04 AA 01 78 A9 01 34 A9 01 C4 AD 01 34 AF 01 78 AE 01 2C AD 01 02 00 00 62 AD 01 60 AD 01 F0 AB 01 88 AD 01 FE AD

	PH					
LSB (0xAA)]	MSB (0x55)			
CT (0x20))]	LSN(0x13)			
		FSA				
LSB (0x95)]	MSB(0xA9)			
LSA						
LSB (0x63)	1	MSB (0x00)			
		CS				
LSB (0x5A)]	MSB(0xE8)			
		S1				
S1[1] (0x01)	S1[2]	(0x08)	S1[3] (0xB9)			
		Si				
Si[1] (0x01)	Si[2]	(0xFE)	Si[3] (0xAD)			

图 8 校验码解析示意图

CS=PH (0x55AA) ^LSN. CT (0x1320) ^FSA (0xA995) ^LSA (0x0063) ^0x00. S1[1] (0x0001)

S1[3]. S1[2] (0xB908).... 0x00. Si[1] (0x0001) Si[3]. Si[2] (0xADFE) = 0xE85A

3.1.7 CT 信息解析

由于一圈点云由一个起始数据包和多个点云数据包组成,T-mini Pro 的数据协议中,每一圈中,这些数据包的 CT[bit (7:1)]携带的信息都不相同。

➤ CT 信息分解

规定起始数据包的索引为 0,后续的数据包的索引以此叠加,则各个索引的 CT[bit(7:1)]对应的信息如下:

表5 CT 携带信息解析

索引	T-mini Pro
0(零位包)	CT = (Freq*10) <<1
1	CT = (CusVerMajor<<6)+(CusVerMinor<<1)
2	CT = 生产调试信息
3	CT = Health<<1
4	CT = (HardwareVer<<5)+(FirewareMajor<<1)
5	CT = FirewareMinor<<1
6-8	CT = 生产调试信息
9	CT=((SN_Year-2020)<<3)+(SN_Number[bit(20:19)]<<1)
10	CT = (SN_Month<<4)+(SN_Number[bit(18:16)]<<1)
11	CT = (SN_Day<<3)+(SN_Number[bit(15:14)]<<1)
12	CT = SN_Number[bit(13:7)]<<1
13	CT = SN_Number[bit(6:0)]<<1
后续索引	CT = 生产调试信息

➤ CT 信息描述

其中,各个携带信息的描述和使用如下表:

表6 CT 携带信息描述

项目	注释	备注
Freq	扫描频率	用户可获取扫描频率
CusVerMajor	用户大版本	用户可根据用户版本做协议的兼容
CusVerMinor	用户小版本	T-mini Pro 当前的用户版本为: V1.0
Health	健康信息	用户可解析该信息,实时获取雷达的状态
HardwareVer	硬件版本	用户可解析该信息,获取雷达的硬件版本
FirewareMajor	固件大版本	用户可解析该信息,获取雷达的固件版本
FirewareMinor	固件小版本	用户可解例该信息,获取由应的回针成本
SN_Year	生产序列号年份	用户可解析 SN 信息,用于追踪雷达信息
SN_Month	生产序列号月份	SN = SN_Year*10^12 + SN_Month*10^10 +
SN_Day	生产序列号日期	SN_Day*10^8 + SN_Number
生产调试信息	未开放	该信息存放生产相关信息,暂未开放

➤ Health 解析

为了便于实时监控雷达的健康信息,T-mini Pro 内部集成了健康信息,Health 集成在索引为 4 的数据包的 CT[bit(7:1)]中,其中 Health 的每一个 bit 位代表不同模块的健康状态,如下:

夜/	健 康信思描处

ᄻᆂᇠᄼᆖᇰᄼᆖᆛᆉᆛ

bit 位	注释	备注
0	Sensor 状态: 0 正常, 1 异常	出现该位异常时,雷达采样 sensor 出现异常,已 无法进行正常测距,一般导致该异常情况有: (1)雷达 Sensor 损坏
1	Encode 状态: 0 正常, 1 异常	出现该位异常时,雷达角度测量系统可能出现异常,一般导致该异常情况有: (1)雷达堵转 (2)雷达光耦异常 (3)雷达码盘异常
2	WiPwr 状态: 0 正常, 1 异常	出现该位异常时,雷达无线供电系统可能出现异常,一般导致该异常情况有: (1)无线模块损坏
3	PD 状态: 0 正常, 1 异常	出现该位异常时,雷达激光发射系统可能出现异常,一般导致该异常情况有: (1)激光管损坏 (2)激光管端子、焊盘脱落
4	LD 状态: 0 正常, 1 异常	出现该位异常时,雷达激光发射系统可能出现异常,一般导致该异常情况有: (1)激光管损坏 (2)激光管端子、焊盘脱落
5	Data 状态: 0 正常, 1 异常	出现该位异常时,雷达扫描一圈完全无有效数据, 一般导致该异常情况有: (1)雷达测距(发射或接收)被遮挡 (2)雷达光路完全偏离,接收不到激光信号

注 1: Health 存在 bit 为 1 时,其对应的模块存在异常,为 0 时,对应的模块正常。

注 2: 由于 AD 资源, PwrHealth、PDHealth、LDHealth, 该 3 项只上电检测一次, 后续的状态不会更新。

注 3: SensorHealth、EncodeHealth、DataHealth,该 3 项检测项为实时检测项目

➤ CT 信息校验

由于数据包未给出每个包的索引,用户只能在起始数据包做一次索引的同步;当用户串口存在丢包现象时,会导致相关信息(Health、用户版本)的解包错误。因此,T-mini Pro引入了一个 CRC8 的校验字节,详细如下:

1) 采用 CRC8 的校验方式,从零位包开始,对每个 CT 进行 CRC8 校验,直到收到下一个零位包。

2) CRC8 的校验结果存放在每个零位包开头, 所以, 零位包的数据结构可以调整为如下:

内容	名称	字节偏移
LastCRC(1B)	上一圈 CT 校验结果	0
PH (2B)	数据包头	1
CT (1B)	零位包: Freq<<1 + 1	3
LSN(1B)	采样数量	4
FSA (2B)	起始角	5
LSA (2B)	结束角	7
CS (2B)	校验码	9
Si (2B)	采样数据	11+2*i

表8 带校验结果的起始数据包数据结构描述

CRC 校验代码,可参考:

```
1 u8 GetCrc8(u8 *ptr, u8 default_crc,u8 poly = 0x8C) {
2 u8 crc = default crc;
3 u8 i;
4 crc ^= *ptr;
5 for (i = 0; i < 8; i++) {\frac{}{0x8c}}
6 if (crc & 0x01) {
     crc = (crc >> 1) ^ poly;
8
9
   else {
10
     crc >>= 1;
13 return crc;
14 }
15 /********************
16 if(*PkgInIndex == 0){ //零位包, 索引 = 0
17 val_crc8 = 0; //清除校验结果,设为0,开始进行下一圈的CT校验
19 val_crc8 = GetCrc8(&PtrPKG->CT, val_crc8, 0x8C); //校验结果存放在val_crc8
20 ***************************
```

图 9 CT 信息校验参考代码

按照此方法的校验结果和起始数据包中 LastCRC 相等,则认为串口数据无丢包现象,相关信息可信,否则不可信。

注: CRC 校验结果放在下一圈数据的开头,即起始包前,因此,只有起始包带 CRC 校验,数据包不携带。

3.2 停止命令 [A5 65]

当系统处于扫描状态时,T-mini Pro 一直在对外发送点云数据,若此时需要关闭扫描,可以发送此命令,令系统停止扫描。发送停止命令后,系统会处于待机状态,此时,设备的测距单元处于低功耗模式,激光器不亮。

该命令是无响应的,因此系统在接收到该命令后,不会有任何报文应答。

3.3 设备信息 [A5 90]

当外部设备向 T-mini Pro 发送获取设备信息命令(A5 90)时, T-mini Pro 会反馈设备的型号、固件版本和硬件版本,以及设备出厂序列号。其应答报文为:

图 10 YDLIDAR T-MINI PRO设备信息报文示意图

按照协议解析: 应答长度 = 0x00000014, 应答模式 = 0x0, 类型码 = 0x04。

即应答内容字节数为 20; 本次应答为单次应答,类型码为 04,该类型应答内容满足一下数据结构:

图 11 YDLIDAR T-MINI PRO 设备信息应答内容数据结构示意图

- ▶ 型号: 1 个字节设备机型,如 T-mini Pro 的机型代号是 150;
- ▶ **固件版本:** 2 个字节, 低字节为主版本号, 高字节为次版本号:
- **▶ 硬件版本:** 1 个字节,代表硬件版本:
- **▶ 序列号:** 16 个字节, 唯一的出厂序列号。

3.4 健康状态 [A5 92]

当外部设备向 T-mini Pro 发送获取设备健康状态命令(A5 92)时, T-mini Pro 会反馈设备的状态码。其应答报文为:

图 12 YDLIDAR T-MINI PRO 设备健康状态报文示意图

按照协议解析: 应答长度 = 0x00000003, 应答模式 = 0x0, 类型码 = 0x06。

即应答内容字节数为3;本次应答为单次应答,类型码为06,该类型应答内容满足一下数据结构:

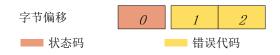


图 13 YDLIDAR T-MINI PRO 设备健康状态应答内容数据结构示意图

▶ **状态码:** 1 个字节, 该字节每个 bit 位对应不同模块的健康信息, 具体如下:

表9 健康状态码 bi	t 位描述
-------------	-------

Bit 位	描述
Bit0	Sensor 状态位,用于判断图像传感器的状态: 1 异常, 0 正常
Bit1	Encode 状态位,用于判断角度检测模块的状态: 1 异常, 0 正常
Bit2	WiPwr 状态位,用于判断无线供电模块的状态:1 异常,0 正常
Bit3	PD 状态位,用于判断激光器反馈电压的状态: 1 异常,0 正常
Bit4	LD 状态位,用于判断激光器驱动电流的状态: 1 异常,0 正常
Bit5	Data 状态位,用于判断雷达数据是否正常: 1 异常, 0 正常
Bit[6:7]	预留状态位

▶ 错误代码: 2 个字节, 当状态码中出现异常, 错误代码则会输出对应模块的异常信息。

注 1: 用户在获取健康信息时,只需关注状态码的情况即可,无需关注错误代码。

注 2: 该信息在上电初期获取一次即可, 雷达实时的健康信息可以通过解析扫描数据包中获取。

3.5 扫描频率设置 [A5 09/0A/0B/0C]

T-mini Pro 提供了多个扫描频率设置的命令接口,用于增加或减少系统的扫描频率,具体如下:

表10 扫描频率设置命令描述

系统命令	描述 Table 1
0xA509	增加 0.1Hz 当前设置的扫描频率
0xA50A	减小 0.1Hz 当前设置的扫描频率
0xA50B	增加 1Hz 当前设置的扫描频率
0xA50C	减小 1Hz 当前设置的扫描频率

上述命令是同一类型命令,有着相同的报文结构。扫描频率设置命令有如下报文结构:

图 14 YDLIDAR T-MINI PRO 扫描频率设置报文示意图

按照协议解析: 应答长度 = 0x00000004, 应答模式 = 0x0, 类型码 = 0x04。

即应答内容字节数为 4;本次应答为单次应答,类型码为 04。其应答内容表示的是当前设置的扫描频率(单位: Hz),其解算公式为:

$$F = \frac{AnswerData}{100}$$

其中, AnswerData为应答内容(小端模式)换算成十进制数据,单位为赫兹(Hz)。

3.6 扫描频率获取 [A5 0D]

该命令用于获取设置的扫描频率(注意不是实时频率),其报文结构和应答内容和扫描 频率设置命令一致,用户可参见 **扫描频率设置**[A5 09/0A/0B/0C],本节不作阐述。

3.7 重启命令 [A5 40]

当外部设备向 T-mini Pro 发送获取设备重启命令(A5 40)时, T-mini Pro 会进入软重启,系统重新启动。该命令无应答。

4 速度控制

T-mini Pro 将系统的速度控制集成到系统的命令接口上,并不是硬件接口上。用户可通过调节扫描频率,来改变电机的转速。具体参见**扫描频率设置**章节,本节不作详细阐述。

5 使用注意

- 1) 在和 T-mini Pro 进行命令交互时,除了停止扫描命令(A5 65), 其他命令不能在扫描模式下进行交互, 这样容易导致报文解析错误。
- 2) T-mini Pro 上电不会旋转,需要发送命令 A5 60 让其进入扫描模式,发送 A5 65 让其停止扫描模式;
- 3) T-mini Pro 堵转时,激光会关闭,串口依旧对外输出测距包(此时测距包中的距离距离为 0,即无效距离),并在 CT 对应的索引上,输出 Health 信息(Encode 错误)。
- 4) T-mini Pro 扫描过程中被遮挡,完全无法测距时,串口的点云数据包的健康信息会报警数据异常等错误。

6 修订

日期	版本	修订内容
2022-04-11	1.0	初撰
2023-12-23	1.1	更新 3.1.6 章节